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INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1991, VOI,. 10, No. 3, 319--347 

Theory of collisional energy transfer of highly excited 
molecules 

by ROBERT G. GILBERT 
School of Chemistry, University of Sydney, N.S.W. 2006, Australia 

The method of obtaining collisional energy transfer data for collisions between a 
highly excited polyatomic and a bath gas from classical trajectories is discussed. The 
technique yields the mean(-square) energy transferred per collision from a 
comparatively small (z 500)  number of trajectories. Results compare favourably, 
qualitatively and quantitatively, with experiment for all except the lightest bath 
gases (where the interaction potential is uncertain). Simple analytical models are 
also examined. These yield methods of obtaining energy transfer data of practical 
use in predicting and interpreting falloff data for unimolecular and recombination 
reactions. It is shown that quantum effects are unimportant for such systems. 

1. Introduction 
This review discusses the theory of collisional energy transfer of a highly excited 

polyatomic substrate molecule colliding with a bath gas. ‘Highly excited’ in this context 
means superthermal (e.g. 2&200 kJ mol- ’) internal (vibrational and rotational) 
excitation, in the ground electronic state; such energies are those typically involved in 
falloff behaviour of unimolecular and recombination reactions (Gilbert and Smith 
1990). ‘Polyatomic’ refers to four or more atoms. As will be shown, for systems of this 
size and energy, classical mechanics supplies an accurate description of the dynamics of 
collisional energy transfer, the computations, and development of approximate 
models, being simplified by the statistical behaviour of a large number of atoms at high 
energy. 

The theory discussed here provides a basis for calculating the rates of collisional 
energy transfer where such quantities are required to predict or fit falloff effects (i.e. the 
pressure dependence of unimolecular and recombination rate coefficients). Such 
studies are of intrinsic scientific interest. Reliable theory (with a preference that such 
theory also be relatively easy to apply) is moreover of considerable technical 
application. For example, many of the reactions involved in combustion and 
aerochemical modelling are in the falloff regime, and rate coefficients for many of such 
reactions either cannot be measured experimentally in the desired range of tempera- 
tures and pressures, or are quite unknown, and hence modellers must rely on 
theoretical estimates. 

Collisional energy transfer is quantified as the rate coefficient R(E, E’)  for the 
process whereby a substrate molecule, with initial energy E’,  undergoes a collision with 
a bath gas molecule and ends up with internal energy E. In this review, we first show 
how to find this quantity from classical trajectories. We start by looking at the type of 
behaviour that would be expected in these collisions, so as to find the general features of 
R(E, E’).  We next examine approximate models, and compare full trajectory results and 
approximate models with each other and with experiment. Finally, the importance of 
quantum effects is examined. This review does not concern itself with how such 
information can be used in the solution of the master equation, which relates R(E, E’) to  
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320 R. G. Gilbert 

thermal rate coefficients; this topic has been discussed extensively elsewhere (Gilbert 
and Smith 1990, Oref and Tardy 1990). 

R(E, E’)  is defined as the number of collision events per unit time, per substrate 
molecule, per bath-gas molecule, that start with the substrate having energy E‘ in the 
active degrees of freedom and finish with this energy lying between E and E + dE. This 
rate coefficient has dimensions (energy-’ volume time-’). It may also be expressed in 
terms of a probability of energy transferred per collision, P(E, El), defined by 

where o(E’) is a total collision frequency, [MI the number concentration of bath gas, 
and Z(E’)  the collision number. For notational convenience, we adopt the common 
assumption that u(E’ )  and Z(E’) are independent of the initial energy E’ (we shall 
examine its validity in section 3).  One then has the following normalization condition 
for P(E,E’)  

P(E,  E’)dE= 1. 

However, it is essential (Lim and Gilbert 1990a) to be aware that the true observable in 
any experiment is the rate coefficient R(E ,  E’)  (or one of its averages), not P(E,  E’), etc., 
and the factorization into ‘per collision’ quantities such as P(E,  E’ )  and ( A E )  is purely 
as an aid to intuition: except for hard spheres, one can never define a ‘collision’. 

In an unimolecular or recombination reaction, the thermal rate coefficient k is 
determined from the solution to the master equation 

- W E )  = CMI j“ C W ,  E’)g(E’) - W’, E)g(E)I dE’ - k(E)g(E), ( 3 )  
0 

where g(E) is the population of substrate molecules with energy E, and k(E)  the 
microscopic rate coefficient for molecules with energy E. 

An important objective is to develop methods that can give sufficient information 
on R(E, E’ )  to predict the pressure dependence of k with sufficient accuracy (i.e. falloff 
behaviour). It is important to realize that for falloff behaviour, and for so-called ‘direct’ 
experiments (which measure the time evolution of the average energy in a non-reacting 
system, e.g. Barker 1984, Shi and Barker 1988, Yerram, Brenner, King and Barker 1990, 
Hippler, Lindermann and Troe 1985, 1989), it is usually unnecessary to know the 
complete functional form of R(E, E’),  but rather only to known the value of a single 
moment: for example, the mean rate of energy transfer RE-, (or equivalently the mean 
energy transferred per collision, ( A E  )), or the mean-squared rate RE,, (or equivalently 
the mean-square energy transferred per collision, (AE’)). These moments are defined 
by 

RE,,n= (E-E”)”R(E,E’)dE, ( A E ” ) =  (E-E’)”P(E, E’)dE. (4) 1: so 
Approximate proofs of the insensitivity of the rate coefficients to all except one moment 
of R(E, E’ )  have been derived (e.g. Keck and Carrier 1965), but these proofs are valid 
only in the limit of very weak collisions; in fact, numerical solution of the master 
equation (e.g. Gilbert and Smith 1990) shows this independence almost always holds to 
a quite acceptable approximation. However, it should be noted that certain types of 
experiments are sensitive to more than one moment of the distribution (e.g. Pashutski 
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Collisional energy transfer 321 

and Oref 1988, Morgulis, Sapers, Steel and Oref 1989, Lohmannsroben and Luther 
1988, Luther and Reihs 1988, King, Nguyen and Gilbert 1981); particular attention will 
be paid to the results of such experiments at a later point. Moreover, certain 
experiments (‘direct’ or ‘physical’ ones; Oref and Tardy 1990) give a relatively direct 
measure of the first moment, RE,, or ( A E ) ,  whereas the second momement RE,,’ or 
( A E ’ )  gives a measure of the width of R(E,E’) ,  and (as will be apparent from 
subsequent discussions) also arises naturally in models for the energy transfer process. 

Although it is unnecessary to know extremely precise information about the 
functional form of R(E,E’)  for many purposes, it must be borne in mind that the 
insensitivity to higher momements is not exact, and the difference between values of, 
say, unimolecular rate coefficients calculated with the same value of ( A E  ), etc., but 
different functional forms for R(E, E’), can be as much as 50%. It is therefore advisable 
to have a functional form for R(E, E’)  that is as physically correct as possible; this point 
will be further discussed in subsequent sections. 

It is seen from their defining equations that ( A E ) ,  ( A E ’ )  and any other single 
measure of R(E, E’) depend on the initial energy E’. This is explicitly taken into account 
in the notation Strictly speaking, one should therefore always report as 
accurately as possible the initial energy when giving experimental or theoretical values 
for any of these quantities. Fortunately, the initial-energy dependence of RE,, is quite 
weak over typical ranges of energy (see below). 

Another common measure of R(E, E’)  or P(E,  E’)  is the average downward energy 
transferred per collision 

J ; ( E ’ -  E)P(E,  E’)dE 
( A E d o w n )  = E’ (5 )  

Jo P ( E , E ‘ ) d E  

This is the average value of the energy transferred for collisions where the molecule 
loses energy, as distinct from ( A E ) ,  which covers both gains and losses of energy. Like 
( A E 2 ) l i 2 ,  (AEdown) is always positive, and is an approximate measure of the width of 
P(E, E’). It is frequently employed because, if one adopts the simple exponential-down 
model, then P(E,  E’)ccexp (- IE - E’l/(AEdown)) for downward collisions, and approxi- 
mate solutions to the master equation for this functional form have been found (e.g. 
Troe 1977). Each of the measures of R(E, E’) discussed here, namely, ( A E ) ,  ( A E ’ )  and 
(AEdown), can be readily computed from any other of these measures, given the form of 
R(E, E’)  and the molecular parameters (e.g. Gilbert and Smith 1990). 

2. Calculation from classical trajectories 
We now show how R(E,E’)  and its moments can be obtained through classical 

trajectory calculations, given a potential function describing the system under study. 
R(E,E‘)  is a phase-space average of the energy transferred by many individual 
trajectories, each of which starts with a set of random initial conditions chosen from an 
ensemble corresponding to the experimental conditions. These initial conditions are 
specified by the impact parameter, the phase and energy of each vibrational mode, the 
rotational energy, orientation of the substrate, and the relative substrate/bath-gas 
translational energy, given that the initial value of the substrate energy is E‘. The 
average must be taken over a sufficiently large number of trajectories that the required 
quantity converges to within a prescribed tolerance. There are publicly-available 
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322 R. G. Gilbert 

programs (e.g. Lim and Hase 1990) which enable one to implement such trajectory 
calculations for a wide variety of potentials. 

Figure 1 shows a series of 'snapshots' from a single trajectory of azulene colliding 
with Xe, the energy of the azulene being about 3 x 104cm-' above the zero-point 
energy, and the relative translational energy being 1.2 kcal mol- ' (corresponding to the 
mean energy of a system at 300K; it will be seen from (5) below that the mean 
translational energy corresponding to a given temperature in these systems is 2k, T). 
Note the large distortions of the azulene during the interaction. Moreover, the 
substrate usually undergoes at least one rotation during the interaction; note also that 
the collision involves interaction of the bath gas with many substrate atoms (partly 
because the azulene is rotating on a timescale that is somewhat faster than the duration 
of the collision). This can also be seen in figure 2, which shows, for a single trajectory, 
the time evolution of Ei(t) ,  the energy of the substrate during the collision; the required 
distribution function R(E, E' )  is that of E,(t = + co), given that Ei(t = - co) = E'. Note 
also the duration of the collision, which is of the order of picosecond (the collision is 
however usually shorter than a picosecond with lighter bath gases). Note also that the 
substrate energy undergoes a large number of peregrinations during the collision, as the 
bath gas interacts with a number of substrate atoms with random vibrational phases. 
That is, the collision involves multiple interactions of the bath gas with one or more of 
the substrate atoms: a 'chattering' collision. These and other features will be discussed 
in more detail in connection with the development of approximate models. 

? 

7 

2 

5 6 

Figure 1. A series of snapshots of an excited azulene/Xe collision (energy transfer=: 
- 500 cm- '). Arrows indicate direction of rotation of azulene (which changes between the 
fifth and sixth snapshot), and direction of motion of Xe (which also changes between the 
same snapshots). For clarity, the sizes of the points representing the atoms are much 
smaller than the van der Waals radii. Note the large distortions of the azulene ring during 
the interaction. 
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36500 - 
36000 - 

~ i ( t )  /cm-1 35500 - 
35000 - 
34500 - 
34000 . I .  I ’ I - 1 . 1 .  I ’ 1 .  

34500m 34000 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

rllcPl2s 
Figure 2. Data from two trajectories showing azulene energy Ei(t)  during collision of excited 

azulene colliding with Xe, relative translational energy corresponding to 300 K. 

The method for obtaining R(E,  E’ )  from trajectory calculations (Lim and Gilbert 
1990a) is as follows. The rate coefficient for collisions between a substrate and a bath 
gas in translational equilibrium is given by (Porter and Raff 1976) 

8k,T 
R(E,  E’) = (y)’” db 2nb jm dE, exp (- E,/kBT)E,B(E, E’, E,, b). (6) 

(kBTI2 0 

Here p is the reduced mass of the substrate/bath-gas pair, E, the relative kinetic energy, 
b the impact parameter, and B the probability of the event in question occurring. For 
simplicity, we have taken the bath gas to be monatomic (the extension required to 
include a bath gas with internal structure is straightforward; Lim and Gilbert 1990a). 
The presence of the factor (kBT)-2exp( -E,/k,T)E, in the integrand implies that the 
mean translational energy is 2k,T, the average value of this function. 

Before proceeding, we note that R(E,  E’) and P(E,  E’) must obey the microscopic 
reversibility (also called detailed balance) relationship 

f ( ~ ’ ) R ( E ,  E’)=f(E)R(E’, E), f (E’ )P(E,  E’)=f(E)P(E’, E), (7) 
where f(E) = p(E)  exp (- E/kBT), p(E)  being the density of states of the substrate. These 
give the relationship between the rates of upward and downward energy transfer. These 
equations, which can be proved from (6), are exact; they arise from the time reversibility 
of the quantum and classical equations of motion, averaged over a Boltzmann 
distribution of translational energies of the bath gas (e.g. Gilbert and Smith 1990). 
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324 R. G. Gilbert 

The rate coefficient i.e. the nth moment of R(E, E’),  can be obtained from (6) as 

x dET exp (- ET/kBT)ETB(E, E’, ET, b). (8) 

The probability B(E, E‘, ET, b) can be found from classical trajectories as follows. In 
addition to the variables of integration considered explicitly in (6) and (8), the system 
has many more degrees of freedom: the positions and momenta of each atom in the 
substrate, which may take any value subject only to the constraint of the given values of 
b, E and E,. These will be chosen in a Monte-Carlo fashion from an appropriate 
distribution. For example, the value of ET is chosen from the distribution f ( E T )  
= (kBT)-’ET exp (- E,/k,T), and b from f ( b )  = 27tb/7tbia,, where b,,, is the maximum 
impact parameter to be considered (i.e. the numerical value of ‘infinity’ in the integral 
over b); the other initial conditions (coordinates and momenta corresponding to the 
specified internal energy, rotational energy and orientation) must also be chosen from 
appropriate distributions using, for example, orthant sampling (Bunker and Hase 
1973). Implementation of the statistics (Lim and Gilbert 1990a) gives the following 
expression for the evaluation using classical trajectories 

The corresponding formula for the distribution R(E, E’) is 

1 N  
b,,,+w N-w E + O  EN i= l  

(10) 
8k,T ‘I’ R(E, E’)= lim lim lim ( y) nbi,, - 1 xi (E,  E’; 6). 

Here N is the number of trajectories, AEi is the energy change in the ith trajectory, and 
the characteristic function xi(E, E‘; E )  is unit if the ith trajectory has its final energy in the 
range E to E + E ,  and is zero otherwise (i.e. E is the bin width). 

Note that in (9) and (10) one never makes any attempt to define a ‘collision’, in the 
form of choosing some prescription for b,,,; instead, one takes the proper limit as this 
maximum impact parameter becomes infinitely large, and calculates the energy 
transfer rate coefficient. The subdivision into ‘per collision’ quantities such as w and 
( A E )  is certainly convenient, and indeed essential for developing approximate models, 
but depends on an arbitrary definition of the collision number. The requisite 
expressions for these are as follows. One defines a collision number Z (see (1)) with 
reference to a convenient hard-sphere diameter d 

z HS - - -  (‘y)’” nd ’, 

where d can be found by a physically reasonable estimate (e.g. Lennard-Jones) using 
the methods discussed below for finding the collision frequency in approximate models. 
‘Per-collision’ quantities are then simply calculated from the values of the equivalent 
rate coefficients, R(E, E’ )  and its moments, using the definitions 

(12) 
1 1 

P(E,E’)=-R(E,  E‘), (AE”)=-RE, ,n .  
Z H S  zHS 
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Collisional energy transfer 325 

To evaluate average energy transfer quantities, one chooses a maximum impact 
parameter b,,, sufficiently large (say, 50% greater than the Lennard-Jones diameter) 
that trajectories beyond this do not exchange significant amounts of energy. One then 
chooses initial conditions randomly (from the appropriate distributions for E T ,  b and 
the positions and momenta of the atoms) and runs a sufficiently large number of 
trajectories so that the chosen moment converges. It is important to note this point 
about the selection of initial conditions. Equation (9) is a deceptively simple recipe for 
the (moments of) the rate of energy transfer. The values of AEi therein (i.e. the energy 
transfer for each trajectory) in this summation are not weighted according to the 
probability of that trajectory, because this weighting is assumed in the derivation to be 
already taken into account in the selection of initial conditions. If one is examining, for 
example, the dependence of the energy transfer rate on ET, then equivalent expressions 
to (9) with f (ET) = 6(Ek  - ET) must be used (Clarke, Oref, Gilbert and Lim 199 1). 

Figure 3 shows the distribution function R(E, E’)  obtained for thermal collisions of 
highly excited azulene with Xe; for convenience, the ordinate is given as the number of 
trajectories, i.e. the factors (8k,T/7~p)~/*nb&,/~N in (10) have been omitted. Figure 3 
was calculated using the potential of Clarke et al. (1991) (bends, stretches and wags for 
the azulene, and Lennard-Jones atom-atom interactions between the azulene and Xe). 
The data of figure 3 were determined using N = 600 trajectories, which while not a 
sufficiently large number to give an accurate representation of the full distribution 
function for R(E, E’), is quite adequate to show the general features (as will be seen, this 
number of trajectories is sufficient to evaluate the second moment, RE, ,2 ,  with 
acceptable accuracy). Note that the average energy per oscillator in this calculation is 
about one quantum above the zero-point energy, which is typical of that of moderate- 
size polyatomic molecules undergoing reaction (in a polyatomic with many degrees of 
freedom, and average of one quantum of excitation per oscillator adds up to a large 
total energy). 

There are three noticeable features of R(E, E’): 

(1) R(E,E’)  falls away to zero for large energy changes (IE-E’I)>>O). This is 
because the transfer of a very large amount of energy could only occur if the 
collision duration were sufficient for complete randomization of energy 
between all degrees of freedom of the substrate and the bath gas. However, the 
collision duration (c. 1 ps or less) is much too short for this to occur, particularly 
in view of the very weak interaction between substrate and bath gas. It should 
be noted that the foregoing argument will not necessarily be applicable if the 
bath gas molecule has a large number of degrees of freedom. In this case, the 
collision can last much longer (a ‘sticky’ collision) and there is an increased 
likelihood of greater randomization between the substrate’s internal energy 
and the kinetic and internal energies of the bath gas. There could then well 
be large amounts of energy transferred, and R(E, E’) could be large for large 
IE-E’I. This case of having a large amount of energy transferred in most 
collisions (applicable if the bath gas molecule contains, say, ten or more atoms) 
is a strong collision. 

(2) R(E, E’ )  assumes large values for small energy changes ( E z E ’ ) ;  a so-called 
elastic peak is present at E = E‘. This arises from energy transfer in collisions 
which occur with large impact parameters (recall that (9) and (10) can only be 
properly evaluated in the limit of an infinite range of b): clearly, trajectories with 
very large b cannot transfer significant amounts of energy. There is correspond- 
ingly a large number of trajectories with high b, since the density of trajectories 
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R(E,E’)  

(as number of trajectories) 

150 

100 

50 

0 
0 8  

0 g z g  c 9 d 

AE cm-1 
Figure 3. R(E,E’) ,  in the form of a histogram of the number of trajectories with a given 

energy transfer. Elastic peak has been truncated. These trajectories all had the same 
translational energy E ,  = 1.2 kcal mol ~ (corresponding to a thermal energy of 300 K), E’ 
= 30 644 cm -’; total number of trajectories = 600. Arrows point to single trajectories 
transferring c. 1.500, 3000 and 3300cm-’. Calculated from the data of Thompson et al. 
(1991). 

with impact parameter b is proportional to 2xb (6). Indeed, this elastic peak in 
R(E, E’) must (classically) be infinite when E = E’. However (e.g. Gilbert and 
Smith 1990), measures of the overall energy transfer rate (e.g. a unimolecular 
rate coefficient in the falloff regime) are always finite. That is, there are many 
collisions which transfer a tiny amount of energy, but these contribute 
vanishingly to the overall energy transfer rate and to the rate coefficient. 

(3) There is a small number (about 1%) of ‘supercollisions’ (indicated with arrows 
in figure 3), which transfer amounts of energy very much greater than the 
average. These have been observed experimentally (Pashutski and Oref 1988, 
Morgulis et al. 1989, Lohmannsroben and Luther 1988, Luther and Reihs 
1988), as well as being seen in trajectory calculations (Lendvay and Schatz 
1990, Clarke et al. 1991); this qualitative accord between an unusual effect seen 
both in simulations and experiment suggests the qualitative correctness of both 
the trajectory approach and of the potential functions employed. The 
explanation of this effect (Clarke et al. 1991) is that these unusual collisions 
involve a substrate atom (hydrogen in the present case) being squashed 
between the bath gas atom and the bulk of the substrate molecule; this forces 
the squashed atom high up the repulsive wall between it and the bath gas atom, 
resulting in a large energy transfer on the recoil. It should be noted that these 
supercollisions have a small but significant (say, 20%) effect on the overall mean 
energy transfer. 

Having considered the full distribution function, R(E, E’), we next consider 
calculations of its moments, as in (9): it will be recalled that for purposes of 
modelling falloff behaviour and ‘direct’ experiments, it is usually sufficient to 
know only or RE,,z. It is more efficient to calculate RE, ,2 ,  since all 
contributions to the summation in (9) will be positive, and thus one expects 
convergence for a smaller value of N than for calculating REf.1, when 
contributions will have both positive and negative sign. Typically, 50&1000 
trajectories are sufficient for adequate convergence of Note that earlier 
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400 - 

350 - < A E ~ &  1 cm-1 

300 - 

250 

studies had suggested that only 100 trajectories were sufficient (Lim and 
Gilbert 1990b); however, this misconception arose because the presence of 
supercollisions (see above) was not realized in these earlier calculations, and 
these supercollisions strongly affect the convergence properties of the summ- 
ations in (9). This convergence is illustrated in figures 4, which shows R E , , 2  (for 
convenience converted to a root-mean-square energy transfer per collision, 
(AE2)'/2) as a function of the reciprocal of the number of trajectories N 
(obviously, the properly converged value of the required quantity is the limit as 
N-' approaches zero). Note the occasional jumps up, followed by a steady 
decrease: this is caused by the occasional supercollision. 

Next, consider the convergence of (9) for increasingly large values of the maximum 
impact parameter b,,,. This can be seen in the pseudo-opacity function, p(b), which is 
defined in the usual way, except that the function considered here has different units 
from conventional opacity functions (an appropriate to the units of the dynamical 
quantity we are considering): for example, we write (8) (for n=2)  as 

. . . .  . .  

.a- J... 
:;: a,. ,.-. .g- 

1 .  I I I 

where 

The function p(b)  is easily obtained from trajectory data [note that this differs from the 
quantity denoted Z(b) = 2xbp(b) in Gilbert and Smith (1990)l. A typical p(b) is shown 
in figure 5. 

As stated, the energy transfer is governed by chattering: many impulsive, essentially 
atom/atom, interactions (this also holds for rotational energy transfer, e.g. Evans, 
Evans and Hoffman 1990). The energy transfer must therefore depend significantly on 

no. of trajectories 

600 400 200 100 
450 1 t 

1 / (no. of trajectories) 
Figure 4. Convergence of mean-squared rate of energy transfer (normalized to root-mean- 

squared energy transfer per collision, (AE2)li2, using d =6.97 A) with number of 
trajectories, for azulene/Xe collisions at T = 300 K, with E' = 30 664 cm - '. Calculated 
from the data of Thompson et al. (1991). 
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p(b)  le-5 

oe+o 
1 2 3 4 5 6 7 8  

b l A  
Figure 5. Pseudo-opacity function p(b) for thermal (T  = 300 K) azulene/Xe collisions; 

E'=  17500cm- '. Arrow shows the Lennard-Jones radius O(Q~, , ) ' /~  (see (17)), where 
o = 5.05 A. Calculated from the data of Clarke et al. (1 991), with 600 trajectories. 

the repulsive part of the interaction potential. This can explain the observation (e.g. 
Oref and Tardy 1990) that average energy transfer values have similar magnitudes for a 
wide range of substrates interacting with the same bath gas, and also that they do not 
depend strongly on the detailed structure of the substrate. Consider for example a 
homologous series of alkane/monatomic bath gas collisions. All must be dominated by 
the same carbon/bath gas plus hydrogen/bath gas repulsive interactions, which will all 
be similar for similar substrates. Hence the lack of variation can be understood directly 
from the chattering nature of the collision dynamics. Of course, the precise value of the 
energy transfer rate coefficient for a particular system will depend on the full details of 
the interaction potential. 

Lastly, in this section, we note that the energy E in (8H10) can in fact be one of 
several different kinds: it can refer to any of 

The total energy of the substrate (which is what is used in figures 2-5). 
The rotational energy of the substrate. This is useful for computing falloff curves 
when the conservation of the J quantum number (angular momentum 
conservation) of the master equation must be taken into account (Forst 1973, 
Smith and Gilbert 1988, Smith, McEwan and Gilbert 1989). When the 
moment of inertia of the activated complex significantly exceeds that of 
reactant, one needs to have information about the rate of collisional energy 
transfer involving two-dimensional (conserved) external rotational energy, E,,,. 
This is achieved (Whyte and Gilbert 1989) by determining the conserved 
rotational component as follows. One diagonalizes the inertia tensor I and 
transforms the resulting angular velocity vector o to the principal axis system. 
E,,, is then given by (law: + Ibwt)/2, where I, and I ,  are the principal moments 
of inertia corresponding to the two-dimensional inactive rotor, and o, and wb 
are the corresponding angular speeds. Since vibration changes the value of E,,, 
even at infinite separation, this quantity must be averaged over the longest 
vibrational period once the two moieties have reached a sufficiently large 
separation. 
The energy of active modes, i.e. the total energy less the energy of the two- 
dimensional (conserved) external rotation E,,,. This energy of active modes is 
that which may be used in an isolated molecule to undergo reaction. 
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Trajectory simulations can be used to explore the rates of different types (total, internal 
and rotational) of energy transfer, data which as yet are not available from experiment. 
Such data are starting to be accumulated (Clarke et al. 1991). As yet, no obvious inter- 
relations or trends with regard to the type of energy transfer being measured have been 
discovered, except the following. 

Average internal, rotational and total mean-squared energy transfer values for 
thermal collisions involving monatomic bath gases are all of similar magni- 
tude: of the order of a few k,T. One important implication of this is that it can 
often be used to provide comparatively simple solutions of the master equation 
incorporating angular momentum conservation (Smith and Gilbert 1988). 
The variation of the mean-square energy transfer rate with the translational 
energy of the bath gas [i.e. using 6(E, - E;) instead of a thermal distribution in 
(8), giving all bath gas molecules the same translational energy E ; ]  shows 
(Clarke et al. 1991) a comparatively weak dependence on E;. For example, the 
mean-square rate of energy transfer for azulene colliding with Xe is found to 
vary approximately as (E;)0'4 for E~<2kcalmol- ' ,  and as (E;)'.' for 
2 6  E i <  10kcalmol-'. From (8), it can be shown (Clarke et a / .  1991) that this 
'microcanonical' dependence of the mean-squared rate on translational energy 
implies the same exponents for the dependence of the thermal ('canonical') 
mean-squared rate on temperature. That is, these simulations suggest that the 
temperature dependence of the mean-square energy transfer rate is weak. 
The dependence of the second moment RE,,2 (or (AE')) on initial substrate 
energy E' is also quite weak, e.g. a variation of only c. 20% as E' varies over the 
range 3000 to 30000cm-'. Note however that the corresponding first 
moments show a strong E' dependence; however, as will be given in detail in 
section 6, a knowledge of is sufficient to specify the value of RE, , ' ,  and 
hence the energy variation of the first moment is inherent in the lack of E' 
variation of the second moment. 

It is essential to make two reservations with regard to trajectory calculations. First, the 
relevance to experiment depends on the correctness of the assumed potential function. In 
favourable cases, the sensitivity to the assumed potential is not very strong; in others, it 
is. A commonly-used potential is a valence force field for the internal Hamiltonian of 
the substrate and a Lennard-Jones atom/atom interaction between the substrate and 
the bath gas. Current comparisons between theory and experiment (see below) suggest 
that this can yield values for RE! ,  which are of an acceptable accuracy provided that 
the bath gas is not too light (e.g. it seems to be invalid for He and Ne, but valid for 
heavier bath gases). Qualitative and quantitative information on the form of typical 
substrate/bath gas potential functions is at  present lacking, and should be an important 
area for future research. Second, there may be significant quantum eflects. This second 
point will be discussed in section 7. 

Before concluding this section, we note that, instead of determining energy transfer 
rates from trajectories and then using the results in solution of the master equation, an 
alternative numerical technique (Bruehl and Schatz 1988) is to solve both the energy 
transfer and master equation problems simultaneously. The computational require- 
ments are approximately the same as those for implementation of the two techniques 
separately. The simultaneous technique is however entirely numerical, and does not 
permit a physical interpretation of the average energy transfer rate coefficients. 
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3. Models for the collision number 
As stated above, a priori calculations of the energy transfer rate coefficient, or of its 

moments, do not require any reference to a collision frequency. There is no need ever to 
define a ‘collision’, and indeed (since deflections will occur for trajectories of arbitrarily 
large impact parameters for any real potential) it is impossible to make a rigid 
definition of a collision for anything except those of hard spheres (or other artificial 
potentials of finite range). However, all current models for the energy transfer make use 
of per collision quantities, as expressed by the factorization of (1). This invokes the 
intuitively appealing concepts of the average energy, and root-mean-square (r.m.s.) 
energy, transferred per collision. These quantities would be expected to be semi- 
quantitatively deduced from approximate models and/or from comparison with data 
for similar collision partners. For such purposes, it is useful to examine the 
approximate separation of R(E, E’) into Z and P(E, E’), and to have models for both 
these quantities separately. The notion of a collision number is the object of this section. 

The total collision number Z can be defined as the integral of R(E, E’) over all final 
energies E. However, as is apparent from figure 3, this integral may in fact be injinite 
because of the elastic peak in R(E, E’), even though this elastic peak does not contribute 
to the overall reaction rate. However, the separation into a probability and collision 
number requires one to have a physically reasonable means of defining an appropriate 
Z,  and, moreover, that this should lead to a finite value for this quantity. 

The basic assumption that would enable one to make a valid definition of a collision 
number is the following: that the variation with impact parameter b of the rate 
coefficient for energy transfer can be assumed negligible beyond some maximum value 
b,,,. One can then use this b,,, to define a collision number for energy transfer, by 
putting d = b,,, in (1 1). The simplest case would be if the pseudo-opacity function of 
(1 3) were a simple step function, or at  least if one could specify some b,,, beyond which 
energy transfer is negligible and which also corresponds to some physically reasonable 
definition of a collision. 

This assumption of being able to define a b,,, can be tested against the results of 
classical trajectory calculations. Figure 5 showed the dependence of RE, ,  upon the 
maximum impact parameter. One sees that energy transfer in fact does not suddenly 
cease at a particular impact parameter. However, it is also apparent that the energy 
transfer rate coefficient indeed assumes negligible values beyond a sufficiently large 
impact parameter, which is the order of (although significantly greater than) the hard- 
sphere radius. Hence an approximate separation of the energy transfer rate coefficient 
into a total collision number and a probability does have some practical meaning. In 
general, one would expect the form of p(b), and hence of b,,, and Z(E’), to depend on 
the initial energy E‘. Such a possibility is explicitly ignored in most treatments. 

The total collision number could always be found by generating plots such as 
figure 5, and making some arbitrary but consistent definition of where to define b,,,, 
but this would defeat the purpose of finding approximate models, and it is necessary to 
resort to a semi-empirical treatment. 

The simplest approach to finding a maximum impact parameter would be the hard- 
sphere collision number; however, it is apparent from figure 5 that this is inadequate 
(since the hard-sphere diameter corresponding to the potential used to generate 
figure 5 is about 5 A). Suppose, as an improvement, one were to use the spherically- 
average potential, and find the total elastic collision rate, either classical or quantum 
mechanical? One problem here is that the total classical elastic collision rate is injnite 
(although clearly our classical inelastic energy transfer rate is well defined, as is 
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Collisional energy transfer 33 1 

apparent from figure 5 and the well behaved convergence of (9) as b,,, is taken to 
arbitrarily high values). Moreover, the total quantum elastic rate (Bernstein 1966, 
Child 1974), although finite, is extremely large, and corresponds to maximum impact 
parameters much greater than those contributing to the energy transfer processes 
under consideration. 

This difficulty can be overcome (Kohlmaier and Rabinovitch 1962), albeit in a non- 
rigorous way, by using the fact that the classical expression for the viscosity is finite, 
even for potentials such as the Lennard-Jones function that have an infinite range. 
Now, the classical viscosity for a realistic potential is related to the hard-sphere value 
by a simple factor, the collision integral. Since viscosity represents momentum- and 
energy-transfer phenomena, one then empirically assumes that this same collision 
integral can be used to deduce a total collision number for energy transfer in the type of 
system under consideration. One has (e.g. Present 1958) 

where Q;,2 is a reduced collision integral. For a Lennard-Jones potential with 
parameters CJ and E,  this may conveniently be approximated by (Neufeld, Janzen and 
Aziz 1972) 

1.16145 0.52487 2.161 78 
Q* - 

2 . 2 - ( ~ * ) 0 . 1 4 8 7 4  -k exp (0.7732 T*) ‘exp (2.437887 T*) ’ 

where T* = k,T/E. The differences between the collision frequencies calculated from the 
hard sphere and (1 5) are not large at high temperatures, but are of the order of a factor 
of 2 at low ones. It is apparent from figure 5 that the maximum impact parameter 
defined from (15) and ( l l ) ,  by putting 

d = o(Q:, 2)1/2, 

does indeed define a maximum impact parameter that encompasses the range 
contributing significantly to energy transfer. 

There are some experimental results (e.g. Lawrance and Knight 1983) on total 
energy transfer rate coefficients to test against the above model. In these experiments, a 
molecule of moderately large size was prepared in a single rovibronic level to give 
a moderately high density of states. The total energy transfer rate coefficient was then 
found from the time evolution of the absorption intensity from the initial state, in the 
presence of added bath gas. The total energy transfer rate coefficient was found to be 
adequately approximated by the Lennard-Jones expression given above, except when 
the bath gas was very light (He or H2). The origin of this may perhaps be the 
inapplicability of the Lennard-Jones potential for the lightest bath gases (see below). 

For systems involving ion/molecule collisions, the interaction potential is quite 
different from the Lennard-Jones 12-6 model, and alternative formulae must be used. 
The simplest of these is the well-known Langevin expression for the collision between 
an ion and a bath gas which has no dipole moment 

Here q is the electronic charge, a the polarizability of the bath gas, and E,, the 
permittivity of free space. Equation (1 8) yields a collision number which is considerably 
greater than that for a hard sphere or Lennard-Jones interaction, as to be expected 
because of the long-range nature of the interaction potential. However, there are at 
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332 R. G. Gilbert 

present no adequate experimental data or classical simulations for collisional energy 
transfer involving highly excited ionic species, and it is only speculation that the 
assumptions leading to the adoption of such an expression (viz., that the form of p(b) is 
qualitatively similar to that of figure 5, with b,,, corresponding to (18)) are justified. 
The methodology discussed above should therefore only be used with extreme caution 
for collisions involving a highly excited ionic species and a bath gas, and experimental 
and classical trajectory calculations for such systems are an important area for future 
work. 

4. Models for energy transfer: functional forms 
As stated above, it is useful both for phenomenological understanding and for 

purposes of fitting and predicting data to factorize R(E, E’)  into a collision number Z 
and a probability of energy transfer per collision, P(E,  E’). We now examine some of the 
approximate models employed for P(E,  E’).  Attention here is confined to systems where 
the substrate contains more than a few atoms: here, a classical statistical models are 
quantitatively applicable. A variety of theoretical approaches have been developed to 
describe energy transfer among small (diatomic or triatomic) species (reviewed by Orr 
and Smith 1987) where quantum effects are important and statistical treatments are 
invalid. 

We begin with more detailed examination of the collision dynamics as exemplified 
in figures 1 and 2. The Hamiltonian for the entire substrate/bath gas system is 

Htot = Hsubstrate + ‘+ Hbath gas (19) 
Here Hsubstrate is the Hamiltonian for the isolated molecule; H b a t h  gas is the Hamiltonian 
of the bath gas; and Vis the interaction potential between the two moieties. P(E,  E’)  is 
the probability that the value of Hsubstrate after the collision is E,  given that its initial 
value is E‘.  The dynamics of the system are described by the time variation of Hsubstrate 
during the collision; figure 2 shows a typical variation of the substrate energy 
Hsubstrate(t) = Ej( t ) ,  for a polyatomic substrate colliding with a monatomic bath gas. 
These show some obvious features: 

(1) The collision is short: c. a picosecond or less. This time is too short for 
randomization of energy between the two moieties, but is significantly longer 
than a typical vibrational period. 

(2) The substrate energy undergoes a large number of oscillations during the 
collision; these oscillations are not apparently of constant phase or amplitude, 
and will be discussed in more detail in connection with the biased random walk 
collision model below. 

(3) The qualitative features of R(E,E’)  must also be borne in mind: (a) The 
functional form for P ( E , E ’ )  should ideally have an elastic peak [although 
strictly speaking this will not contribute to most experimental observations, 
and indeed is precluded by the approximations involved in factorizing R(E,  E ’ )  
into a jn i t e  collision number a probability per collision]. (b) P(E,  E’) should 
decrease for large energy differences between initial and final states. (c )  It must 
obey microscopic reversibility, (7). (d  ) The presence of supercollisions should 
also be included. 

We now consider specific models for P(E,E’ ) ,  bearing in mind this dynamical 
behaviour. There are two objectives here. The first is to obtain information on the 
general type offunctionalform for this quantity, e.g. if it can be approximated by an 
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exponential or Gaussian. The second is to obtain reliable quantitative estimates of 
parameter values to use in these functional forms for the purposes of predicting or fitting 
experimental data. It will emerge that no approximate model obeys all the criteria set 
out above, although some models do satisfy most of them: in particular, the biased 
random walk model, and the impulsive ergodic collision theory model, furnish (for 
different situations) curate’s eggs which are edible. 

4.1. Exponential-down model 
This model is given by 

where N(E’) is a normalization constant determined by (2), and with the form for E > E‘ 
being fixed by microscopic reversibility, (7). Equation (20) satisfies the physical 
requirement that it decreases for sufficiently large IE-E’I, but otherwise has no 
particular basis in any model for the collision dynamics. A variant is the double- 
exponential model 

where the quantity y is determined by microscopic reversibility, but is assumed to be 
energy-independent. One can approximate y to be energy-independent if f ( E )  is 
approximately exponential over the energy range of interest (e.g. Troe 1977). In such 
cases, the double-exponential model has the advantage that an approximate analytical 
solution of the master equation can be obtained (e.g. Troe 1977). It is therefore often 
employed to fit experimental data. 

4.2. Biased random walk (BR W )  model 
This model (Gilbert 1984, Lim and Gilbert 1986, 1990c) takes account of the 

oscillations in Ei( t )  noted above, and of constraints imposed by microscopic 
reversibility and energy conservation; however, it takes no account of supercollisions. 
It is deduced as follows. 

E,(t)  shows a large number of apparently uncorrelated oscillations during the 
collision. This is because the vibrational phases of the different modes of the highly 
excited substrate will be random, and thus any group of atoms will show quasi-random 
motion. This in turn will be reflected by the motion of the bath gas atom as it interacts 
with these atoms during a collision (figure 1). 

If the time variation of Ei(t)  during a collision is indeed random, then the required 
probability distribution can be obtained from the theory of the diffusion of a Brownian 
particle (e.g. McQuarrie 1976). That is, one can treat the motion as being a (diffusive) 
random walk, representing the collision dynamics, although this takes place in ‘energy 
space’, not in the ordinary Cartesian space of a Brownian particle. Because the 
constraint of microscopic reversibility specifies the relationship between the up and 
down steps (i.e. as if the drunken sailor, conventionally used to anthropomorphize a 
random walk, were staggering on a sloping path), the random walk is biased. 
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The test of randomness is provided by the autocorrelation function of the time 
derivative of E,(t), (ki(t)ki(0)). Figure 6 shows a typical energy derivative autocorrel- 
ation function, and indeed, one sees that on the timescale of a collision (say, a 
picosecond: see figure 2), the autocorrelation has decreased significantly, as expected if 
the energy exchange during the collision were pseudo-random. This suggests that the 
flow of energy between substrate and collider can be described as a diffusive process in 
the substrate energy during a collision event. 

Given the assumption of a random walk constrained by microscopic reversibility, 
one obtains a simple functional form for P(E,  E’), as follows. The ‘diffusion coefficient’ 
in energy space for random variation of Ei( t )  during a collision will be the integral of the 
energy derivative autocorrelation function (e.g. McQuarrie 1976) 

D = (f?i(t)l?i(0)) dt. (22) 
0 

The constraint on the random energy migration caused by microscopic reversibility is 
given by the equation for diffusion in an external field. Specifically, it is assumed that 
the distribution function B ( E ,  E’, t )  for the probability of the substrate, with initial 
energy E‘,  having energy Ei at time t during the collision, is given by the Smoluchowski 
equation (e.g. McQuarrie 1976) 

where z is a quantity arising from microscopic reversibility. The probability distri- 
bution P(E,  E’ )  can then be identified as B(Ei = E, E’,  t = t J ,  where t ,  is the duration of a 
collision. It is of course recognized that there is no rigorous way of defining the 
beginning and end of a collision, but this assumption of some sharp beginning and end 
is inherent in developing the model; figure 2 shows that the onset and cessation of 
significant bath gas/substrate interaction are indeed fairly sharp. If D and z are 
independent o f t  and of Ei, then the solution of (23) is 

- (ZS~ + E - E ‘ ) ~  
4s2 

P,,,(E, E ’ )  = (47~s’)- exp [ 
where the value of z is identified from the microscopic reversibility relation for P(E, E’) 
of (7) yielding 

and the quantity s, which has the dimensions of energy, is given by 

s2 = Dt,. (26) 

( A E ) =  -s’z, (27) 

( A E  2 ,  = 2s2 + s4z2. (28) 

The BRW form for P(E,  E’) of (24) yields 

In many situations s4z2 <<2s2, and so one can primitively approximate the second 
moment to 2s’ in the BRW model, i.e. the second moment appears in a natural (albeit 
approximate) way in the functional form for P(E,  E’ )  of (24). 
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t (fs) 
Figure 6. Normalized autocorrelation function (&(t)&(O)) for azulene/Ar collisions at 

E'=17500cm-'. Redrawn from the data of Lim and Gilbert (1990~). 

Equation (24) was derived with the assumption that z in (25) is energy-independent, 
i.e. that f ( E )  is exponential. One regime where this assumption will always break down 
is for large molecules and/or at high temperatures, when f(E) goes through a 
maximum. Under those circumstances (Gilbert and Oref 1991), it is acceptable to 
assume f ( E )  to be Gaussian 

where c and E are constants determined from the actual population distribution. 
Applying the same treatment used to obtain (24), one obtains (with minor but very 
accurate approximations) 

(high temperature), (30) 1 1 - [ E  - E -  (E' - E)q] 
4c2(1 - q2) 

where q = exp ( - bt,) and b is the solution of the equation exp ( - btc) = (D/2c2b) - 1. It is 
noteworthy that if one takes the limit of very short collisions (t ,+O), then the right-hand 
side of (30) reduces to 6 ( E -  E'), i.e. no energy transfer, just as one expects for very short, 
i.e. very weak, collisions. If on the other hand one takes the limit of extremely long 
collisions (t,+co), then the right-hand side of (30) reduces to that of (29), i.e. to f ( E ) ,  
which is the strong-collision form. Hence the high temperature functional form of the 
BRW model has the pleasing characteristic of having infinitely weak and strong cases 
as the appropriate limits for very short and very long collisions. 

Although not considered further here, it should be noted that the BRW model is 
also able to yield useful information on the functional form for the dependence of 
collisional rotational energy transfer on initial and final rotational energy (Smith and 
Gilbert 1988). 

4.3. Strong collision model 
The strong collision model for P(E,  E') assumes that the collision probability is 

proportional to the equilibrium population of theJinal energy, and independent of the 
initial energy 

PSdE, E') = f ( E ) ,  E < E', (31) 
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where f ( E )  here has for convenience been normalized so that Sf(E)dE= 1. This 
functional form was often used because it leads to a simple solution of the master 
equation (e.g. Gilbert and Smith 1990). However, the model is completely unphysical. 
Because f ( E )  is usually a decreasing function of substrate energy E,  the strong collision 
model implies that a molecule having a very high energy is most likely to finish with a 
very low energy after a single collisional encounter. It therefore predicts extremely large 
values of (AE): values of the order of lO“cm-’, which is one or more orders of 
magnitude above those actually observed. This error can be partially (but improperly) 
corrected through a ‘collision efficiency’ f l ,  which assumes that only one in every 1 / f l  
collisions actually transfers energy, but that the probability is still greatest for going to 
low energies from high ones. This is in qualitative contradiction to trajectory 
simulations. The only case where the strong collisional model is very approximately 
applicable is where the bath gas is a very large polyatomic, since then the falloff curve 
predicted by the strong collision model is indistinguishable from that found for a 
physically realistic form for P(E,  E’). 

4.4. Impulsive ergodic collision theory 
These models are based upon the ideas inherent in the strong collision model, but 

take better account of the actual collision dynamics. These models assume some form 
of ergodicity between the degrees of freedom of substrate and bath gas. Now, this 
cannot be accurate for many situations, for example when the bath gas is not a large 
polyatomic (since then the collision is too short for significant randomization of the 
energy between the substrate and the bath gas). Such models may however be valid 
when the bath gas is a moderately large polyatomic, and indeed in such cases the results 
can be in acceptable accord with experiment. The best of these ergodic models is the 
‘impulsive ergodic collision theory’ (IECT) of Nordholm and co-workers (Schranz and 
Nordholm 1981), which assumes that the collision is ergodic in the kinetic energy alone 
(rather than the kinetic plus potential energy). Given this assumption, one can deduce 
the probability of energy transfer in terms of ratios of the densities of states of 
translational degrees of freedom of substrate and bath gas before and after the collision. 
Appropriate ensemble averaging and approximate evaluation of the translational 
densities of states yields the following form for P(E, E’ )  

where K refers to kinetic energy, p refers to densities of states, the subscripts 1,2 and 12 
refer to substrate, bath gas and the combined system respectively, and the partition 
function 

Q =  dK pz(K)exp(-K/k,T). s 
5. Models for energy transfer: parameter estimation 

We next consider how the parameters required in the approximate models for 
R(E,E’)  discussed in the preceding section can be evaluated, for the purposes of 
predicting and fitting experimental data, and, more importantly, in gaining phenomen- 
ological understanding. Note that the exponential model, because it has no physical 
basis, does not provide any a priori means to estimate the requisite energy transfer 
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parameter (i.e. (AEdown) in (20)). The strong collision model contains no parameters 
except those required for the calculation of f ( E ) ,  namely, the vibrational frequencies 
and rotational constants of the substrate. 

The biased random walk model is written in terms of a single parameters, (24), which 
in turn requires the collision time t, and the ‘energy-space diffusion coefficient’ D. 
Recent work (Clarke et al. 1991) has shown that these can be obtained with quite 
acceptable reliability using what has been denoted ‘Model B (Lim and Gilbert 1990~). 
This approximate treatment of the dynamics is as follows (see Lim and Gilbert 1990c, 
for further details). 

First, the collision time is taken to be the average time for traversing the spherically 
averaged substrate molecule/bath gas interaction potential V,,(r), starting from a 
closest interaction distance d,  and having translational energy E,, 

(33 )  

Here p is the substrate/bath gas reduced mass (,C1 =mS;is +mLg’, where the terms on 
the right-hand side are the molecular weights of substrate and bath gas respectively), 
b,, =+d is an average impact parameter, and ro is the classical turning point (i.e. where 
the quantity in square braces in (33 )  is zero). E,, in ‘Model B is taken as the average 
substrate molecule/bath gas translational energy 

E,, =2kBT, (34) 

(recall that this is 2k,T rather than the usual 1.5kBT). 
The next step is to specify D, which starts with (22). We utilize the standard 

theoretical treatment of Brownian motion, to assume that the time evolution of E ,  
during a collision is given by a generalized Langevin equation 

d2Ei 
-- - a  - s’ K(z)Ei(t - Z) dz + X(t ) ,  
dt2 - -a, 

(35 )  

where a is a quantity related to z, X ( t )  is a randomly fluctuating ‘force’, and K( t )  a 
memory kernel. The next supposition is that K( t )  is exponential 

K(t)  = ( A 2  + C 2 )  exp ( -2At) .  (36) 

Solution of (35 )  then yiel s P 
(8,(t)fii(O)>=(Ef)exp(-At) 

After substituting (37) into (22), and then using (26), one has 

(37) 

The quantities then to be determined to yield the parameters are ( E f ) ,  t,, A and C.  C ,  
which determines the rate of oscillations in the autocorrelation function (figure 6), is 
taken to be given by the highest vibrational frequency, vh, of the substrate molecule (this 
is usually a C-H stretch) 

c = 27cvh. (39) 
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338 R. G. Gilbert 

A,  which gives reciprocal of the decay time of the autocorrelation function, is estimated 
by noting that it is impulsive interactions which dominate the energy transfer, and that 
these impulsive interactions are strongest at the classical turning point of an 
atom/atom interaction. The decay time is therefore approximated as that occurring 
when a constant average force F acts on an average or 'local' atom/atom harmonic 
oscillator. If the energy involved is denoted E(t),  then the reciprocal of the decay time is 
given by the short-time limit of E -  ' dE/dt (this is found simply by treating the energy as 
that of a harmonic oscillator under the influence of an external constant force). If the 
initial energy is E,,, and the mass of the oscillator denoted mb, then one finds 

We take m, as that appropriate for interaction between an average substrate atom 
and all the rest of the substrate, i.e. the reduced mass of a substrate atom, 
6 = msubs/natoms (where the substrate molecule contains natoms atoms), and the difference 
between msubs and m 

(note that (40) corrects an error in (34 b) of Gilbert and Lim 1990~). F is estimated by 
noting that it is the changes at the classical turning point of each local atom/atom 
interaction that contribute most to the energy transfer, and thus hypothesizing that P is 
the absolute value of the force due to a local atom/atom effective potential at the 
turning point 

Here VyzE(r) = KOc(r) + Eav(bloc/r)Z, where the average 'local' impact parameter 
bloc = $~~,,(l2t, z)1i2, and (assuming for simplicity that the interaction is Lennard-Jones) 
qOc is the 'local' Lennard-Jones radius, i.e. voc(r) = 4 ~ ~ ~ ~ [ ( 0 ~ ~ ~ / r ) ~ ~  - (oloc/r)6j. The 
parameters clot and eloc are taken as the averages of those of the substrate atoms (see 
Gilbert and Smith 1990 for examples). 

The mean-squared rate of substrate energy change, ( I??) ,  is estimated as the 
product of the frequency vb and some average energy. This average energy is in turn 
approximated as the average kinetic energy E,, minus an average energy change per 
oscillation period, AK with the restriction that A V  not be less than &Eav. This gives 

AV is found as follows. Let Ax = (2Eav/k)1/2 be the distance moved by the oscillator, 
where k is an appropriate force constant. The diminution AVcan be approximated as 
Ax d QOc/dx, evaluated at an average atom-atom distance x. The force constant can be 
approximated as k=4n2m,ightv$ where mlight is the mass of the lightest atom (it is the 
lightest atoms that are responsible for the rapid oscillations). The average atom-atom 
distance x can be approximated as the mean of an outer value ( X / C J ~ ~ ~ = ~ ,  again 
assuming a Lennard-Jones local interaction and using the average impact parameter as 
above) and an inner one (X/CJ~,,~ = 1): thus the average x is given by x/olOc =& One 
thus has 
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Collisional energy transfer 339 

Equations (38H44), (33) and (34) furnish the complete expressions required to evaluate 
the parameter s (and hence other energy transfer parameters such as ( A E )  and 
( A E 2 ) ’ / 2 ) ;  a program to evaluate this quantity is included in the UNIMOL suite 
(Gilbert, Jordan and Smith 1991). 

While easy to evaluate numerically (requiring only a quadrature), these expressions 
are not physically transparent. It is useful to consider some approximations which lead 
to simpler order-of-magnitude expressions. First, in (38), one notes that usually 
A << C 2 ,  and so the former term may be ignored in the numerator. Next, one ignores 
the terms involving A V  in (43). One then obtains simply 

This simplified and approximate expression does indeed lead to physical insight. It 
states that the energy transfer is dominated by the force at the turning point of a local 
atom/atom repulsion. Using typical values tc% 10- l 2  s, Fz(5-10) x 10- N, the latter 
derived from a Lennard-Jones potential using E,,= 2kBT, etc., immediately gives a 
value of s of about 102cm-’ at T =  300 K .  This simple estimate immediately explains. 
the typical size of the energy transferred per collisions observed experimentally with 
monatomic bath gases: something no other approximate model is able to do. The 
dominant energy transfer process in a collision between a highly excited substrate and a 
bath gas consists of many atom/atom interactions, which are dominated by the (‘local’) 
repulsive wall of the interaction between the individual substrate and bath gas atoms. 
The ‘energy leak’ that constitutes the energy transfer process is caused by the force at 
this repulsive wall, the energy involved being the mean kinetic energy of the bath gas. 

The impulsive ergodic collision theory model of (32) also leads to an explicit 
expression for the energy transfer. Evaluation of the partition functions yields 

where CI = (3n - 3)/(6n - 8) for linear substrates and a = (3n - 3)/(6n - 9) for nonlinear 
ones (n being the number of atoms in the substrate; nl = 3n - 5; and, for a monatomic 
bath gas, n, = 1, while for a polyatomic bath gas, n, has the same form as nl ,  n now 
being the number of atoms in the bath gas). Comparisons of the predictions of the IECT 
with experiment show agreement for large bath gases (say, ones containing more than 
ten atoms), but poor accord for monatomic and diatomic bath gases: the predicted 
values of ( A E )  are typically an order of magnitude too high in this case. The reason for 
this behaviour is that the collisions involving large polyatomic bath gases are probably 
of sufficient duration for significant energy randomization to occur, but this is not the 
case with a mon- or diatomic bath gas. 

With both the BRW and the IECT, evaluation of the expressions for the average 
energy transfer can be easily carried out using readily available parameters of the 
substrate and bath gas: a major advantage of the models. 

6. Comparison of experiment, simulations and models 
In the present article, we do not give any overview of experimental data on 

collisional energy transfer of highly excited molecules, a subject which has been 
extensively reviewed elsewhere (Gordon 1988, Tardy and Rabinovitch 1977, Quack 
and Troe 1977 and 1981, Holbrook 1983, Barker 1984, Oref and Tardy 1990, Hippler 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
3
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



340 R. G. Gilbert 

and Troe 1989). We here compare experimental data, classical trajectory simulations, 
and results from approximate models, (1) to test the adequacy of the assumed potential 
functions and the possibility of quantum effects (comparing trajectories and experi- 
ments) and (2) to test the dynamical assumptions involved in approximate models, by 
comparing them with trajectory data obtained using the same potential function. 

It is essential to note that the latter comparison is a more valid test of the models 
than are direct comparison of their predictions with experiment. This is because there 
are three assumptions in comparing models with experiment: (1) the potential function 
is correct; (2) the dynamical approximations are correct; and (3) quantum effects are 
unimportant (assuming that the model is a classical one). If there is accord between a 
model and experiment it could imply either that all approximations are justified, or that 
there are self-cancelling errors present (an illustration of this will be presented below). 
However, by model/simulation comparison with the same potential function, it is 
possible to test the dynamical approximations in a proper fashion that can lead to 
improved understanding. 

Prior to making such comparisons, some consideration should be given to the 
quantities to be compared. For example, ‘direct’ experiments give a measure (after 
calibration!) of the value of the first moment ( A E ) ,  whereas (as explained above) the 
second moment ( A E  ’) is more readily obtained from trajectories. However, the 
various measures can be readily interconverted if one assumes a functional form for 
R(E, E’). The interconversion is through direct numerical evaluation of the defining 
equations, (4); in implementing this, it is essential to take account of microscopic 
reversibility, (7), and normalization, (2), which means that interconversion involves the 
solution to a nonlinear integral equation (Gilbert and King 1980). Numerical methods 
for carrying out this solution are easily implemented (Gilbert and King 1980), and 
available as part of a public-domain computer package (Gilbert et al. 1991). 

It is found that this interconversion does not depend strongly on the assumed 
functional form, as illustrated in figure 7. If one chooses to make such comparison with 
per-collision quantities (e.g. (AE’)’’’) rather than the rate (e.g. RE.$’) which 
constitutes the true observable, it is essential (e.g. Lim and Gilbert 1990a) that 
comparison be made using the same collision number. Which measure one chooses is 
virtually a matter of taste (de gustibus non disputandem); because the second moment 
expresses the average absolute energy transferred per collision, and because it arises 
naturally in the BRW model, we here choose (AE2) l / ’  to make our comparisons. 

In the same context, it is pertinent to note (Clarke et al. 1991) that experimental data 
on the variation of ( A E )  with E‘, about which there has been considerable debate (e.g. 
Barker 1984), are consistent (when converted to corresponding values of the second 
moment) with values of (AE2) l / ’  that have only a slight variation with E‘. If (AE’ )  
shows no (or little) variation with E‘, then the variation of ( A E )  with energy is dictated 
entirely by the density of states of substrate, through (4) and (7) (see also figure 7 and 
accompanying discussion). 

It is also noteworthy that energy transfer quantities measured in any experiment are 
in fact an ensemble average of quantities which are functions of the initial energy E’ 
(Penner and Forst 1977). These ensemble averages are denoted ( ( A E ” ) ) ,  etc. 

( ( A  E “) ) = ( AE “(E ’)) C( E ’) dE ’, (47) s% 
where G(E’) is a normalized population distribution appropriate to the experiment 
under consideration. As discussed above (see Clarke et al. 1991), trajectory data 
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Figure 7. Comparison of mean and root-mean-square energy transferred per collision for 

azulene at 300 K, calculated with exponential-down and biased-random-walk forms 
for P(E,E’) .  
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Figure 8. Trajectory (Lim and Gilbert 1990b, using 120 trajectories) and experimental (see text) 
values of (AE’)l/’ (converted from rates using Lennard-Jones collision numbers of 
Hippler et al. 1989) for azulene/rare gas collisions at 300K; initial azulene energy 
= 30 664 cm ~ l .  Additional square on Xe trajectory results is component due to 
supercollisions found from running larger number of trajectories (Clarke et al. 1991). 

indicate that the second moments (RE,,z  or (AE’)) are only weakly dependent on E’; 
hence the experimental ensemble averages for these quantities can be accurately taken 
as the values of the E’-dependent moments over a wide range of E’. However, the first 
moments, (AE) or RE,,  can depend strongly on E’, and an experimental ((AE)) can 
only be equated to (AE(E’) )  over a (possibly narrow) range of E’. 

Figure 8 shows comparison of the results of trajectory simulations (Lim and Gilbert 
1990b, originally carried out with 120 trajectories per bath gas) and experimental 
values (Yerram et al. 1990 and references therein, denoted Barker, which constitute the 
group of Barker and co-workers; Hippler, Otto and Troe 1989, and references therein, 
which constitute the Gottingen group). Results show (AE2)1/2 for azulene initially at 
E’= 30 664 cm-’. The experimental data, which strictly refer to ((AE’)), actually 
refer to somewhat different energy distributions, but as stated it appears from trajectory 
data that the variation of the second (but not the first) moment with E’ is small. The 
trajectory results for Xe include the increase of about 20% found when a very large 
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342 R. G.  Gilbert 

number of trjectories is run, this increase being due to ‘supercollisions’ as discussed 
above (Thompson et al. 1991). These supercollision corrections to the original work of 
Lim and Gilbert (1990b) for gases other than Xe are as yet unavailable. It is seen that the 
accord between trajectory results and experiment is quite acceptable for the heavier 
bath gases, but poor for the lightest ones. It has been found (Lim and Gilbert 1990b) 
that making the assumed interaction potential significantly softer than Lennard-Jones 
can bring the trajectory results closer to experiment for the lightest bath gases, while 
making insignificant changes to the results for the heavier ones. These results suggest 
that the true bath gas/substrate potential function may be of a softer (e.g. exp-6) form 
(similar effects are found in rotational energy transfer, e.g. Evans et al. 1990). However, 
the comparison is also strongly suggestive that trajectory results for the heavier bath 
gases are a quantitative, and those for the lightest bath gases qualitative, reflection of 
the actual collision dynamics. This conclusion is supported by the observation of 
supercollisions in both experiment and trajectories, as discussed above. 

Next, we consider the comparison with the predictions of the BRW model B, using 
the highly simplified description of the interaction dynamics embodied in (38H44), (33) 
and (34). The comparison is shown in figure 9. The BRW evaluations were carried out 
using the same interaction potential as was used for the full trajectory calculations, so 
the predictions of the simple model should be compared with ‘exact’ trajectory results 
rather than with experiment. It is seen that the BRW model gives quite good accord 
with the trajectory data for the same potential functions, for all except the lightest bath 
gases. This suggests that the parameterized form of the BRW model given in these 
equations should be of acceptable validity. The large underestimate for the lightest bath 
gases is ascribed to the substrate/bath gas interaction potential being too repulsive. 
Equation (45) suggests that the average energy transfer is extremely sensitive to the 
form of the repulsive wall, through the quantity F in that equation, which is the slope of 
the average atom/atom potential at the classical turning point. 

While the underestimate of the amount ofenergy transfer for the lightest bath gases 
by the model B BRW is a cause for concern, by a coincidence it is in the opposite 
direction to the overestimate of the energy transfer when the trajectory results are 
compared to experiment. There is thus a cancellation of errors when the model is 
compared to experiment, as in figure 10. It is apparent that the approximate model is in 
surprisingly good accord with experiment! It is however emphasized that this is due to a 
fortunate cancellation of errors, and such accord cannot be relied upon to hold in all 
cases. Nevertheless, the BRW model B has now been tested in a wide variety of 
situations, and seems to give quite good results, as illustrated in table 1; the examples 
here are all those appearing in an illustrative compilation (Gilbert and Smith 1990). The 
BRW results are essentially of sufficient accuracy for falloff calculations. 

7. Quantum effects 
The theory discussed up to this point has been entirely classical. It is vital to assess 

the importance of quantum effects, since if these are significant the foregoing theoretical 
approach may be invalid. It will emerge that all current evidence suggests that quantum 
effects are in fact unimportant for most cases of interest involving collisions of a highly 
excited polyatomic: a conclusion which is of some relief, since it is evident that even a 
classical approach is a difficult one. 

The basic reason for being able to ignore quantum effects arises from the enormous 
density of states of a highly excited polyatomic substrate, together with the strong 
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Figure 9. Trajectory and BRW model B<AEZ)'IZ for azulene/rare gas collisions at 300K; 

initial azulene energy = 30 664 cm ~ '. Supercollision corrections not included. 

He Ne Ar Kr Xe 
Figure 10. BRW model B and experimental (AE2)'12 (converted from rates using Lennard- 

Jones collision numbers of Hippler et al. 1989) for azulene/rare gas collisions at 300 K; 
initial azulene energy = 30 664 cm ~ '. 

Table 1. (AEz)'/' values (cm-') from experiment and BRW model B; bath gas is Ar. 
Experimental references and parameters from Table 5.2 of Gilbert and Smith (1990). 

Molecule (AE2)l12 (experiment) (AE2)''2 (BRW) 

Azulene 300 290 
Toluene 260 300 
Ethyl acetate 650 1000 
CF,I 200 210 
CH,CF, 420 240 
CH,CH,NC 390 520 
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344 R. G. Gilbert 

coupling between these states engendered both by intramolecular anharmonicities in 
the substrate and (more importantly) the relatively strong couplings brought about 
during the passage of the bath gas. A typical energy change because of a collision is 
c. 10' cm-'; since substrate densities of states can be in the range 10s-1020 states per 
m-', the system might pass through lO7- lOZ2 quantum states between the initial and 
final energies. Such a large change in quantum numbers involving coupled states 
should be a sufficient condition for the validity of a classical approximation to the 
dynamics. Nevertheless, this argument is more a pious hope than a rigorous proof, and 
we now turn to various tests of the supposition. After all, quantum effects in energy 
transfer for collisions involving small molecules are important, especially for low 
excitation energies, where the density of states is very small. These effects are known 
and relatively well understood (Orr and Smith 1987). In large molecules at low 
excitation energies (up to a few thousand cm-', much less than energies at which such 
molecules react) both experiment and theory indicate significant quantum effects 
(Hippler and Troe 1989); the observed trends can be explained semi-quantitatively in 
terms of quantum 'propensity rules' (Tang and Parmenter 1983, Kable, Thoman and 
Knight 1988). Could there also be significant quantum effects for collisions involving 
large, highly excited molecules? 

Some quantification of the qualitative arguments for the unimportance of quantum 
effects is found in the calculations of Cochrane and Truhlar (1990), who compared 
quantum and classical calculations of (AE2) for the collinear He/H, and He/Cl, 
systems. Any quantum effects would be expected to be very large in such systems, 
because of the light masses of one or more partners, and the low density of states arising 
from the small number of atoms and the collinearity. However, except in the case of 
extremely low energy transfer values, the quantum and classical results were typically 
within 30% of each other (the quantum result always being lower). Thus from the results 
of what might be described as a cruel test, it would appear that quantum effects are 
relatively unimportant in the systems forming the subject of this review, with their 
much higher dimensionality and density of states. Nevertheless, further evidence is 
certainly desirable, for the following reason. 

In the comparison between the results of trajectory calculations and experiment for 
highly-excited azulene/rare gas collisions, there was good accord between trajectory 
and experimental results for all except the lightest bath gases: Ne and especially He. 
This was ascribed to the inaccuracy of the He/azulene interaction potential function 
employed (and indeed softening the repulsive wall brings about much better accord, as 
indeed is expected from (45)). However, quantum effects may play a role with a very 
light bath gas such as He. We now consider various possibilities. 

) Quantum effects might arise from zero-point energy. An ordinary classical 
calculation takes no account of the zero-point energy of the polyatomic, which in 
the case of azulene is very large: about half the total substrate energy in the 
systems studied. Classically, there is no constraint for the energy in a particular 
mode not to go below its zero-point energy, whereas some quantum constraint 
exists, at least after the collision. Now, the energy transferred in a collision in 
these systems turns out to be only a small fraction of the total zero-point 
energy, so this contra-indicates a significant quantum effect due to this cause. 
Another argument is that experimental and trajectory results are in good 
agreement for the heavier bath gases: any azulene zero-point energy constraint 
should be equally operative for heavy and light bath gases. Finally, in 
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experimental studies (Brown, King and Gilbert 1988) of energy transfer 
differences between deuterated and undeuterated systems (e.g. tert-butyl 
bromide and tert-butyl bromide-d,), only small differences were seen in the 
(AE 2)1/2 values of deuterated and undeuterated species, despite the very large 
differences in zero-point energy. The sum of these separate pieces of evidence 
strongly suggests that substrate zero-point energy cannot play any significant 
role in any quantum effect. 

(2) Another possibility (Gilbert and Zare 1990) is that quantum effects could arise 
because of the interference involving the two matter waves giving zero angle of 
deflection; it is this interference that gives rise to a finite quantum total elastic 
cross section (Bernstein 1966). It is seen in figure 5 that a significant 
contribution to the energy transfer comes from impact parameters close to the 
Lennard-Jones radius, which is also close to the impact parameter at which a 
balancing between attractive and repulsive parts of the interaction potential 
gives zero angle of deflection. The same interference effects might be important 
in inelastic scattering. One means of answering this question would be through 
quantum calculations on the energy transfer. The only calculations to date of 
reasonable accuracy for such systems have been for p-difluorobenzene as 
substrate (Clary 1987), but here the substrate energy was very low. This is an 
important field for future work. An alternative test of quantum effects (Gilbert 
and Zare 1990) is to examine the behaviour when the mass of the bath gas is 
changed by isotopic substitution, i.e. the bath gas analogue of deuterating the 
substrate. Experimental studies of the effect of changing the bath gas from 4He 
to 3He (Toselli and Barker 1990) show only a small effect. However, any 
quantum interference phenomenon involving the bath gas would be expected 
to show a large change on such isotopic substitution. These experimental 
results strongly suggest that quantum interference effects can be discounted in 
the systems under consideration. 

(3) Another possibility (Toselli and Barker 1990) is that quantum effects arise from 
the very different distribution functions in classical and quantum mechanics 
(e.g. a quantum oscillator in the lowest state is most likely to be found in the 
centre, while the corresponding classical one is most likely to be found at the 
ends). However, the experimental data on the effects of deuteration (which 
would significantly change the initial distribution), and the fact that corre- 
sponding trajectory studies (Clarke and Gilbert, to be published) mirror the 
small changes on isotopic substitution observed experimentally, again suggest 
that this effect does not significantly alter the energy transfer. 

(4) Another suggestion (J. R. Barker, private communication) is that neither C-H 
nor C-D participate much in the actual (quantum) energy transfer process in 
these systems, because the average energy in these modes is very small, and 
hence the foregoing lack of effect on deuteration cannot be used to discount the 
importance of quantum effects. While this is an interesting possibility, the 
accord between experiment and trajectory results with heavier bath gases, 
when such an effect would also be operative, suggests that this may not be the 
case. 

In summary, the sum of the evidence appears to indicate that quantum effects are 
unimportant in collisions between a highly excited polyatomic and a bath gas, and that 
the discrepancy between trajectory results and experiment for the lightest bath gases 
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346 R. G. Gilbert 

can be ascribed to the bath gas/substrate interaction potential being significantly softer 
than the Lennard-Jones r - I 2  atom/atom repulsion often used. 

7. Summary 
In this review, we have shown how the distribution function for the rate coefficient 

for energy transfer, R(E, E’), and its moments, can be obtained from classical trajectory 
simulations, and examined the physical insight to be gained from such calculations and 
from comparison with experiment. It is important to realise that one is calculating a 
rate coejicient, not an average energy transfer per collision, so that there is no need ever 
to try to define a ‘collision’. The collision dynamics are best described as ‘chattering’: 
multiple interactions during a short (c. s) collision between a bath gas and 
substrate, dominated by the repulsive part of the mutual interaction potential. There is 
also a small fraction (of the order of 1%) of supercollisions, which occur when a 
substrate atom is squashed between bath gas and substrate framework and which 
transfer a large amount of energy. Because the collisions are short-lived, there is no 
significant randomization of the energy distribution between the two entities (unless 
the bath is a very large polyatomic). Except for the lightest bath gases, trajectory data 
seem to be in accord with experiment, and the discrepancy observed for light bath gases 
can be ascribed to the bath gas/substrate interaction being softer than is commonly 
assumed. 

The trajectory data can be used to develop and test approximate models for the 
energy transfer process. The most successful of these for collisions with a monatomic 
bath gas is the biased random walk model, which assumes that the energy transfer 
during the collision is random, subject to the constraint of microscopic reversibility. 
This leads to a Gaussian form for the probability of energy transfer. For large 
polyatomic bath gases, the impulsive ergodic collision theory model seems quantia- 
tively applicable. The BRW model can be developed to yield a comparatively simple 
expression for the average energy transfer, with an accuracy that can be used to predict 
average energy transfer quantities of sufficient accuracy to be used in falloff calculations 
(although this is due to a fortunate cancellation of errors for the lightest bath gases). 
This model can also be used qualitatively to explain the magnitudes of experimental 
results. 
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